Enligt Poiseuilles lag varierar flödeshastigheten genom en rörlängd med den fjärde effekten i rörets radie. Det är inte den enda variabeln som påverkar flödeshastigheten; andra är rörets längd, vätskans viskositet och trycket som vätskan utsätts för. Poiseuilles lag antar laminärt flöde, vilket är en idealisering som endast gäller vid låga tryck och små rördiametrar. Turbulens är en faktor i de flesta tillämpningar i den verkliga världen.
Hagen-Poiseuille-lagen <<> Den franska fysikern Jean Leonard Marie Poiseuille genomförde en serie experiment på vätskeflöde under början av 1800-talet och publicerade sina resultat i 1842. Poiseuille krediteras med att ha dragit slutsatsen att flödeshastigheten var proportionell mot den fjärde kraften i rörradie, men en tysk hydraulikingenjör, Gotthilf Hagen, hade redan kommit till samma resultat. Av denna anledning hänvisar fysiker ibland till förhållandet Poiseuille publicerad som Hagen-Poiseuille-lagen.
Lagen uttrycks som:
Volymflödeshastighet \u003d π X tryckskillnad X rörradie 4 X vätskeviskositet /8 X viskositet X rörlängd. F \u003d πPr 4 /8nl För att uttrycka detta förhållande: Vid en given temperatur, flödeshastighet genom en röret eller röret är omvänt proportionellt mot rörets längd och vätskans viskositet. Flödeshastigheten är direkt proportionell mot tryckgradienten och den fjärde kraften i rörets radie. Även när turbulens är en faktor kan du fortfarande använda Poiseuilles ekvation för att få en rimligt noggrann idé om hur flödeshastigheten förändras med rördiametern. Kom ihåg att den angivna storleken på ett rör är ett mått på dess diameter, och du behöver radien för att tillämpa Poiseuilles lag. Radien är halva diametern. Anta att du har en längd på 2-tums vattenrör, och du vill veta hur mycket flödeshastigheten kommer att öka om du byter ut den med 6-tums rör. Det är en förändring i radien på 2 tum. Antag att rörets längd och trycket är konstant. Vattnets temperatur bör också vara konstant, eftersom viskositeten hos vattnet ökar när temperaturen sjunker. Om alla dessa villkor är uppfyllda kommer flödeshastigheten att ändras med en faktor 2 4 eller 16. Flödeshastigheten varierar omvänt till längden, så om du fördubblar rörets längd medan du håller diameter konstant, får du ungefär hälften så mycket vatten genom det per tidsenhet vid konstant tryck och temperatur.
Tillämpa Poiseuilles lag