Förstå krafterna
* tyngdkraft (vikt): Blocket upplever en nedåtgående kraft på grund av tyngdkraften, som vi kallar dess vikt (mg, där 'm' är massan och 'g' är accelerationen på grund av tyngdkraften).
* Normal kraft: Det lutande planet skjuter tillbaka på blocket vinkelrätt mot ytan och skapar en normal kraft.
* spänning: Strängen drar på blocket och skapar spänning.
Gratis kroppsdiagram
Rita ett gratis kroppsdiagram över blocket. Detta är en visuell representation av alla krafter som verkar på blocket.
* Rita blocket på det lutande planet.
* Rita en pil som pekar rakt ner från blocket för att representera tyngdkraften (MG).
* Rita en pil vinkelrätt mot det lutande planet, som pekar bort från blocket för att representera den normala kraften (n).
* Rita en pil parallell med det lutande planet, pekar uppåt, för att representera spänningskraften (t).
Löstande krafter
Eftersom blocket är rörligt (i jämvikt) måste krafterna balansera. Vi måste lösa krafterna i komponenter parallella och vinkelrätt mot det lutande planet:
* parallellt med det lutande planet:
* Tyngdkraften har en komponent parallell med planet:mg * sin (theta), där theta är lutningsvinkeln.
* Spänningen fungerar direkt i denna riktning.
* vinkelrätt mot det lutande planet:
* Gravity har en komponent vinkelrätt mot planet:mg * cos (theta).
* Den normala kraften balanserar denna komponent.
Tillämpa Newtons lagar
* Newtons första lag: Ett objekt i vila kommer att förbli i vila såvida det inte verkar av en nettokraft. Eftersom blocket är rörligt måste nettokraften som verkar på det i båda riktningarna (parallella och vinkelrätt mot planet) vara noll.
* parallellt med planet: Krafterna är spänningar (t) uppåt och gravitationens komponent nedåt (mg * sin (theta)). Eftersom dessa måste balansera:
* T =mg * sin (theta)
Slutsats
Strängens storlek i strängen är lika med komponenten i blockets vikt som verkar parallellt med det lutande planet. Detta kan beräknas som:
t =mg * sin (theta)
Där:
* T är spänningen i strängen
* m är blockets massa
* g är accelerationen på grund av tyngdkraften (cirka 9,8 m/s²)
* theta är lutningsvinkeln