• Hem
  • Kemi
  • Astronomi
  • Energi
  • Natur
  • Biologi
  • Fysik
  • Elektronik
  • Pendel har en gravitationspotential energi på 224 J när den är vid sin högsta punkt vid den lägsta i svängningshastigheten 4 ms Vilken masspendel?
    Så här löser du detta problem:

    Förstå koncepten

    * Gravitational Potential Energy (GPE): Detta är den energi som ett objekt har på grund av dess position i ett gravitationsfält. Det beräknas som:gpe =mgh, där:

    * m =massa (kg)

    * g =acceleration på grund av tyngdkraften (ungefär 9,8 m/s²)

    * h =höjd över en referenspunkt (m)

    * kinetic energi (KE): Detta är den energi som ett objekt har på grund av dess rörelse. Det beräknas som:ke =(1/2) mv², där:

    * m =massa (kg)

    * v =hastighet (m/s)

    Bevarande av energi

    Den viktigaste principen här är bevarande av energi. När pendeln svänger förblir dess totala energi (GPE + KE) konstant. Vid sin högsta punkt är all energi GPE. Vid sin lägsta punkt är all energi KE.

    Lösning av problemet

    1. Ställ in ekvationen:

    Eftersom den totala energin bevaras:

    GPE (högsta punkt) =ke (lägsta punkt)

    MGH =(1/2) MV²

    2. Avbryt massan (m):

    Lägg märke till att massan visas på båda sidor av ekvationen. Vi kan avbryta det.

    GH =(1/2) V²

    3. Lös för höjden (h):

    H =(V²)/(2G)

    4. ersätt värdena och beräkna:

    h =(4²)/(2 * 9,8) =0,816 m

    5. Lös för massan (M) med GPE -ekvationen:

    Gpe =mgh

    224 J =M * 9,8 * 0,816

    M =224 / (9,8 * 0,816) =28,1 kg (ungefär)

    Därför är pendelmassan ungefär 28,1 kg.

    © Vetenskap & Upptäckter https://sv.scienceaq.com