Kanske är den viktigaste färdigheten för fjärde grader den som multiplikation. Ett viktigt sätt att undervisa multiplikation är via multiplikationsmeningar. Till skillnad från en traditionell mening använder multiplikationsmeningar siffror och symboler för att uttrycka ett uttalande. Genom att lära sig multiplikationssatser lär fjärde grader hur multiplicering och tillägg relaterar till varandra.
Delar av en multiplikationssats
En multiplikationssats består av två delar: en del är ett matematiskt uttryck och andra delen är produkten. Vid multiplikation är ett matematiskt uttryck den del av meningen som kommer före likformen. Det matematiska uttrycket innehåller faktorerna och multiplikationssymbolen. I satsen "2 x 8 = 16" är "2 x 8" -delen till exempel det matematiska uttrycket. De matematiska uttrycken innehåller inte svaret, vilket även kallas produkten. I multiplikationssatsen "2 x 8 = 16" är de två och åtta faktorerna och 16 är produkten.
Skapa meningar med hjälp av arrayer
Innan eleverna kan lära sig om multiplikationsmeningar måste de förstå begreppet en matris. En grupp består av en uppsättning nummer eller objekt som är ordnade i kolumner och rader - vanligtvis på ett rutnät. Detta gör det möjligt att räkna antalet kolumner och multiplicera det resulterande värdet med antalet rader. Genom att använda multiplikation behöver eleverna inte manuellt räkna varje objekt i rutnätet. Detta utgör grunden för multiplikationsmeningar och förbereder studenterna för mer avancerad matematik. Till exempel, visa eleverna en matris som har nio objekt i varje rad och totalt sex rader. Visa dem att de kan räkna varje enskilt objekt i matrisen, eller de kan multiplicera nio gånger sex för en produkt av 54. Till exempel ser den fullständiga meningen ut som "9 x 6 = 54."
Skapa multiplikation Satser
Multiplikationssatser tjänar en avgörande funktion för att möjliggöra fjärde graders att lära sig att använda matematik på ett praktiskt sätt. Möjligheten att konstruera en multiplikationsdom sträcker sig bortom klassrummet genom att förbereda studenterna att beräkna ett stort antal objekt. En elev som vet hur man skapar egna multiplikationsmeningar kan titta på ett fem-fem-rader av objekt och vet att rutan innehåller totalt 25 objekt. Be eleverna att räkna antalet rader i en bild och skriv sedan det numret på sina papper. Skriv sedan en multiplikationssymbol och skriv antal kolumner efter symbolen. I ett fem-i-sex rutnät ska eleverna skriva "5 x 6," med "x" som symbol för multiplikation. När de har gjort det, berätta för dem att skriva ett likartat tecken och lösa problemet. Exempelvis ser en korrekt multiplicationssats för ett fem-i-ett-rader av objekt ut som "5 x 6 = 30."
När man använder multiplikationssätt
Multiplikations-meningar fungerar bara när Problemet innehåller lika många poster i varje kolumn eller rad. Om du till exempel har en grupp av objekt med ett föremål i den första raden, två i den andra raden och tre i den fjärde raden måste du använda en tilläggssats och lägga till var och en av raderna ihop. Tillsatsmeningen ser ut som "1 + 2 + 3 = 6." Det finns inget sätt att räkna ut med en multiplikationsdom. Om du däremot har två objekt i varje rad och tre objekt i varje kolumn kan du använda en multiplikationssats för att uttrycka hela ekvationen. I det här exemplet kommer meningen att se ut som "2 x 3 = 6." Nummer två representerar raderna i arrayen och nummer tre representerar antalet kolumner.
Skapa en mening från ett Word-problem
Wordproblem verkar alltid kasta studenterna av, men en gång eleverna förstår hur man skriver en multiplikationsdom, ordproblem bör vara enklare för eleverna. Ge ett ordproblem, till exempel "Matt samlade en äppelbussel. Han har tillräckligt med äpplen att placera fem äpplen per rad sex gånger. Hur många äpplen har Matt?" Skynda upp och ta reda på svaret innan han äter en. " Lär eleverna att rita en bild på ett rutnät för att hjälpa dem att visualisera problemet, och sedan tillämpa samma koncept som du använder när du skapar meningar från ett rutnät. I det här exemplet ska studenten skriva multiplikationssatsen som "5 x 6 = 30."