Sannolikheten för en händelse är chansen att händelsen kommer att inträffa i en given situation. Sannolikheten för att få "svansar" på en enda mynt, till exempel, är 50 procent, även om i statistik ett sådant sannolikhetsvärde normalt skulle skrivas i decimalformat som 0,50. De individuella sannolikhetsvärdena för flera händelser kan kombineras för att bestämma sannolikheten för att en specifik sekvens av händelser inträffar. För att göra det måste du dock veta om händelserna är oberoende eller inte.
Först, titta på videon nedan för en snabb uppdatering om grundläggande sannolikhet:
- Bestäm den individuella sannolikheten (P) för varje händelse som ska kombineras. Beräkna förhållandet m /M där m är antalet resultat som resulterar i intresse och M är alla möjliga resultat. Exempelvis kan sannolikheten för att rulla en sex på en enda matrulle beräknas med m \u003d 1 (eftersom endast en yta ger ett resultat av sex) och M \u003d 6 (eftersom det finns sex möjliga ytor som kan dyka upp) för P \u003d 1/6 eller 0.167.
- Bestäm om de två enskilda händelserna är oberoende eller inte. Oberoende händelser påverkas inte av varandra. Sannolikheten för att huvuden på ett myntkast kastas påverkas till exempel inte av resultaten av en tidigare kast av samma mynt och är så oberoende.
- Bestäm om händelserna är oberoende. Om inte, justera sannolikheten för den andra händelsen för att återspegla de villkor som anges för den första händelsen. Om det till exempel finns tre knappar - en grön, en gul, en röd - kanske du vill hitta sannolikheten för att välja den röda och sedan den gröna knappen. P för att välja den första knappen röd är 1/3 men P för att välja den andra knappen grön är 1/2 eftersom en knapp nu är borta.
- Multiplicera de individuella sannolikheterna för de två händelserna tillsammans för att få den kombinerade sannolikheten . I knappexemplet är den kombinerade sannolikheten att välja den röda knappen först och den gröna knappen andra är P \u003d (1/3) (1/2) \u003d 1/6 eller 0.167.
Tips: Samma tillvägagångssätt kan användas för att hitta sannolikheten för mer än två händelser.