Newtons lag om universell gravitation
Tyngdkraften mellan två objekt beskrivs av följande ekvation:
F =g * (m1 * m2) / r²
Där:
* f är tyngdkraften
* g är gravitationskonstanten (ett konstant värde)
* m1 och m2 är massorna av de två föremålen
* r är avståndet mellan de två föremålens centra
Effekten av avstånd
Lägg märke till att avståndet (r) är kvadrat i nämnaren för ekvationen. Detta betyder att:
* Om du dubbel Avståndet mellan föremålen blir gravitationskraften en-fjärdedel lika stark.
* Om du halverar Avståndet mellan föremålen blir gravitationskraften fyra gånger starkare.
Exempel
Föreställ dig två objekt som ursprungligen separerades med ett avstånd från 'r'. Gravitationskraften mellan dem är F. Om vi halverar avståndet till 'R/2' blir kraften:
F '=g * (m1 * m2) / (r / 2) ² =4 * g * (m1 * m2) / r² =4f
Därför ökar gravitationskraften fyra gånger när avståndet halveras.