• Home
  • Kemi
  • Astronomien
  • Energi
  • Naturen
  • Biologi
  • Fysik
  • Elektronik
  •  science >> Vetenskap >  >> Andra
    Hur man beräknar en genomsnittlig procentuell förändring

    Att beräkna en procentuell förändring i ett tal är enkelt; att beräkna medelvärdet för en uppsättning siffror är också en känd uppgift för många människor. Men hur är det med att beräkna genomsnittlig procentuell förändring av ett tal som ändras mer än en gång?

    Till exempel, hur är det med ett värde som initialt är 1 000 och ökar till 1 500 under en femårsperiod i steg om 100? Intuition kan leda dig till följande:

    Den totala ökningen av procenten är:

    [(Slutligt - initialvärde) ÷ (initialvärde)] × 100

    Eller i detta fall,

    [(1 500 - 1 000) ÷ 1 000) × 100] \u003d 0,50 × 100 \u003d 50%.

    Så den genomsnittliga procentuella förändringen måste vara (50% ÷ 5 år) \u003d + 10% per år, eller hur?

    Som dessa steg visar är detta inte fallet.
    Steg 1: Beräkna de individuella procentuella förändringarna.

    För exemplet ovan har vi

    [(1 100 - 1 000) ÷ (1 000)] × 100 \u003d 10% för det första året,

    [(1 200 - 1 100) ÷ (1 100)] × 100 \u003d 9,09% för det andra år,

    [(1 300 - 1 200) ÷ (1 200)] × 100 \u003d 8,33% för det tredje året,

    [(1 400 - 1 300) ÷ (1 300)] × 100 \u003d 7,69 % för fjärde året,

    [(1 500 - 1 300) ÷ (1 400)] × 100 \u003d 7,14% för femte året.

    Tricket här är att erkänna att det slutliga värdet efter en en given beräkning blir det initiala värdet för nästa beräkning.
    Steg 2: Summa indiv idual Procentandelar <<> 10 + 9,09 + 8,33 + 7,69 + 7,14 \u003d 42,25
    Steg 3: Dela upp med antal år, försök, osv.

    42,25 ÷ 5 \u003d 8,45%

    © Vetenskap https://sv.scienceaq.com